見出し画像

データサイエンス をマーケティング実務に活かすイロハ(後編)

知るギャラリー公式note

こんにちは!笠原です。
本日は知るギャラリーより「データサイエンスをマーケティング実務に活かすイロハ」の後編の記事について書いていきたいと思います。

「データサイエンティスト」。皆さんはお仕事で付き合いはありますでしょうか。データのプロフェッショナルの力を借りることで、マーケティングの可能性をよりひろげることができるのは間違いありません。
今回はデータサイエンティストという職業や特性について解説していきます。

◆データサイエンティストという職業と付き合い方


2010年代に入ってから職業として認知されるようになったデータサイエンティストですが、データサイエンティスト志望者は年々増加傾向にあり、企業活動における活用が当たり前になる時代が到来しています。

それはマーケティング職においても例外ではなく、マーケティングにデータサイエンスを活用して成果改善に繋げた事例が数多く紹介されるようになってきました。

一方で、自社においてもデータサイエンスを活用したいと意気込んでみたものの、「データサイエンティストと一緒に仕事をして話がかみ合わない」とか、「提案を受けたけど、課題解決につながるかどうかイマイチ想像できない」といった話もよく耳にします。

こういった壁を乗り越え、成果に繋がるデータサイエンス活用をやり遂げるためには、まず、データサイエンティストの特性を理解することが大切です。

◆データサイエンティストの得意なこと・苦手なこと

誰にでも得意なこと・苦手なことが有りますが、データサイエンティストが一般的に得意・苦手と言われていることをご紹介します。

得意なことはもちろん、データサイエンスそのものです。データを適切に加工し解析したり、モデルを構築してアウトプットを出力したりといった工程は多くのデータサイエンティストが得意とするところです。

一方、苦手なことは、データサイエンスの前後の工程です。例えば分析を始める前には、「ビジネス課題を正しく理解し、その解決に必要なアウトプットから逆算してプロジェクトを組み立てる」といったことが必要になりますし、分析が終わった後には「分析結果を関係者にわかりやすく共有し、アクション判断の材料として展開する」ことが必要になります。
これらをデータサイエンティストにすべて任せることはあまりお勧めしません。

それは、データサイエンティストは、多くのケースにおいて依頼主のビジネスについて門外漢であり、役割的にリードする立場には適していないためです。

例えば、分析前の工程をデータサイエンティストにすべて委ねてしまうと、ビジネス課題の理解が十分でないまま、データサイエンティスト自身が得意とする手法で分析を実行してしまいがちです。

その結果、依頼主が必要とするアウトプット要件にそぐわない分析結果となってしまう危険性が高まります。また後工程の、分析結果によって取るべきアクションについて依頼主を含めた関係者間での事前のすり合わせが十分でないと、アウトプット自体をうまく活用できないままプロジェクトが終わってしまうという事態になりえます。

◆データサイエンティストに意図をうまく伝え、生産性を上げるコツ
次に、データサイエンティストに依頼者の意図を正確に伝えるための「伝えるコトバの工夫」について解説します。データサイエンティストが用いる専門的な用語を覚える必要はありません。依頼者自身のコトバで伝えることが重要です。
ポイントとなるのは、手法の名前ではなく「動詞で表現する」ということです。データサイエンスでできることは、おおむね「予測」、「分類」、「要約(縮約)」、「因果を検証」、「因果を探索」の5つの動詞いずれかに該当します。

データサイエンティストに伝えるべきことは左側、データサイエンスで何をしたいのかという「動詞」です。動詞を伝えれば、データサイエンティストが依頼主の意図をくみ取って分析イメージを作り上げてくれるでしょう。
 
データサイエンスを活用するにあたり、「何から手を付けていいかわからない」という状態から「データサイエンティストにちょっと相談してみたい」と前向きな気持ちになっていただけたら幸いです。
データサイエンティストとうまく付き合うことで、貴社のマーケティング活動がより前進し、大きな成果に結びつくことを願っております。

参考記事:データサイエンス をマーケティング実務に活かすイロハ(後編)
関連セミナー情報(https://gallery.intage.co.jp/event/


みんなにも読んでほしいですか?

オススメした記事はフォロワーのタイムラインに表示されます!